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The need for rehabilitation

By Blausen

Medical

Communica-

tions, Inc.

• Strokes are a leading cause of disability [WHO]

• Parts of the brain stop functioning

• Lengthy rehabilitation process

• Impact on quality of life of patients

• Impact on quality of life of physiotherapists
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Rehabilitation::Traditional rehabilitation
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Robotic rehabilitation::Exoskeletons

Harmony: Upper-limb Exoskeleton for Stroke Rehabilitation
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Robotic rehabilitation::Exoskeletons

• Very complex mechanics

• Long development times

• Very costly

• Sizing issues

• Long attachment/detachment times (dead time)
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Robotic rehabilitation::End-effectors

InMotion Robot

• Very specific types of motion
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Robotic rehabilitation

• Current trend is to mimic ’normal’ motion [D́ıaz et al.]

• Without significant results [Kwakkel et al.]

• Newest paradigm: Patient chooses trajectories,

physiotherapist assists [Hidler and Sainburg; Lum et al.]

• Goal of BETER REHAB project: assist patient along intented

trajectory

• Goal of TRUE REHAB project: patient along muscle

optimized trajectory [Caiozzo et al.]
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Robotic rehabilitation::Collaborative robotic arms

• Lower development

costs

• Much faster

attachment

• Patient specific

• Safe

Disadvantage
More complex control is necessary
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Talk Overview

• Intention of motion

• Muscle optimized trajectories

• Muscle force estimation

• Robot control
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Intention of motion



Intention of motion::How?

EMG can help us predict the intention of a person

The robot can then assist in the right direction by the desired

amount
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Intention of motion::Measurements
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Intention of motion::Measurements
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Intention of motion::Prediction

43rd International Conference of the IEEE Engineering in

Medicine and Biology Society
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Intention of motion::Prediction

43rd International Conference of the IEEE Engineering in

Medicine and Biology Society
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Intention of motion::Experimental validation
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Intention of motion::Experimental validation

Quantifying the human-robot force interaction

IEEE Robotics Automation Magazine
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Muscle optimized trajectories



Rehabilitation::Muscle forces estimation

Operation principle
Calculate trajectories for maximizing/minimizing force production

of specific muscle forces

• Increase effeciency of rehabilitation

• Train specific muscles

• Minimize load on sensitive areas (e.g. surgery)

15



Rehabilitation::Muscle forces estimation

Operation principle
Calculate trajectories for maximizing/minimizing force production

of specific muscle forces

• Increase effeciency of rehabilitation

• Train specific muscles

• Minimize load on sensitive areas (e.g. surgery)

15



Rehabilitation::Muscle forces estimation

Operation principle
Calculate trajectories for maximizing/minimizing force production

of specific muscle forces

• Increase effeciency of rehabilitation

• Train specific muscles

• Minimize load on sensitive areas (e.g. surgery)

15



Rehabilitation::Muscle forces estimation

Operation principle
Calculate trajectories for maximizing/minimizing force production

of specific muscle forces

• Increase effeciency of rehabilitation

• Train specific muscles

• Minimize load on sensitive areas (e.g. surgery)

15



Rehabilitation::Muscle forces estimation

Operation principle
Calculate trajectories for maximizing/minimizing force production

of specific muscle forces

• Increase effeciency of rehabilitation

• Train specific muscles

• Minimize load on sensitive areas (e.g. surgery)

15



Muscle forces::Estimation

Relationship between muscle activation (EMG) and force is not

known

Several parameters that we should identify [Thelen]

• Maximum isometric force

• Tendon slack length

• Pennation angle

• Fiber length
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Muscle parameters::Identification

Musculoskeletal modelling [Reed et al.; Blana et al.]

Global Search Optimization methods [Kennedy and Eberhart;

Falisse et al.]
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Muscle parameters::Identification

Preparing for Computer Methods in Biomechanics and Biomedical

Engineering
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Robot control



Control::Scheme
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Control::Robot model
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Control::Practical problems

• No torque control available on the UR5

• Black box controller

• Uncertainty in motor parameters
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Alternative Controller
Sliding mode controller can be implemented for the outer postion

feedback loop (cartesian coordinates) - based on the linearised

closed loop model from vco to xm

Preparing for Mathematical Problems in Engineering
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Control::Practical problems

• No torque control available on the UR5

• Black box controller

• Uncertainty in motor parameters

Controller identification
We have successfully identified the structure and parameters of the

internal controllers of the robot
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Control::Practical problems

• No torque control available on the UR5

• Black box controller

• Uncertainty in motor parameters

Motor parameters

identification

• Current-torque relationship

• Staic and dynamic friction

Preparing for ICONS 2022
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Questions?
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